

Pigmented Lesions in a Day-to-Day Practice in Dermatopathology: A practical case-based approach

2023 Pennsylvania Association of Pathologists Saturday, April 15, 10:30 AM – 11:00 AM

Jason B. Lee, MD

Professor Director of Dermatopathology Director of Pigmented Lesion Clinic Department of dermatology and Cutaneous Biology Thomas Jefferson University

HOME OF SIDNEY KIMMEL MEDICAL COLLEGE

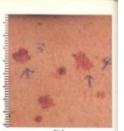
I have no financial conflict to disclose

Table of Contents: Melanocytic Neoplasms

- 1. Brief Historical Perspective
- 2. Current Environment of Diagnosis
- 3. Illustrative Cases

Dysplastic/Atypical/Clark nevus

• Most commonly biopsied melanocytic lesion


Copyright © 1978 by the AMERICAN MEDICAL ASSOCIATION		
	11	
VOL 114, NO. 5 MAY	1978	EDITORIAL BOARD
ORIGINAL CONTRIBUTIONS		SETTORIAL PORTO
Speckled (Particulate) Epidermal Nuclear IgG Deposition	- 11	
In Normal Skin Stephen D. Prystowsky, MD, Denny L. Tuffanell, MD, San Francisco	705	Chief Editor John H. Epstein, MD
Peoralen-UVA-Treated Peorlatic Lesions Ken Hashimoto, MD: Hiromu Kohde, MD, PhD: Masanobu Kumasiri, MD:		450 Sutter Street San Francisco \$4108
Steven L. Blender, MD. Memphis: Isaac Willis, MD. Decateur, Ga	. 711	
Intravascular Papillary Endothelial Hyperplasia		Assistant Chief Editor
Ronald J. Barr, MD: James H. Graham, MD: Lawrence A. Sherwin, MD. Irvine, Calif	723	Kimie Fukuyama, MD San Francisco
Pariably Occlusive Tape Systems and the Mitotic Activity		
of Shipped Human Epidermia		
Louie B. Fisher, PhD, La Jolla, Calif, Howard I. Maibach, MD, San Francisco Ronald J. Trancik, PhD, St Paul	727	Assistant Chief Editor Denny L. Tuffanelli, MD
Palmar and Plantar Pustulosis Elicited by Candida Antigen		San Francisco
Masami Uehara, MD, Kyoto, Japan	730	
Origin of Familial Malignant Melanomas From Heritable Melanocytic Lesions		Donald C. Abele, MD Augusta, Ga
Wallace H. Clark, Jr. MD, Philadelphia: Ronald R. Reimer, MD; Mark Greene, MD, Bethesda, Md;		Augusta, Ga
Ann M. Airsworth, MD: Michael J. Mastrangelo, MD, Philadelphia	732	
Scalpel Excision of Basal Cell Carcinomas Robert S. Bart, MD: David Schrager: Alfred W. Kopf, MD:		Harry L. Amold, Jr, MD Honolulu
Judith Bromberg, MS: Neil Dubin, PhD, New York	739	
Multiple Hamartoma Syndrome (Cowden's Disease)		Walter C. Lobitz, Jr. MD
Col Donald D. Nuss, MC, USA; Col John L. Aeling, MC, USA; Maj Donald E. Clemons, MC, USA;		Portland, Ore
Maj Wallace N. Weber, MC, USA, Denver	743	
The Epidemiology of Scables in Denmark, 1900 to 1975		Frederick D. Malkinson, M
Jette Christophersen, MD, Copenhagen	747	Chicago
Tumblewood Dermatitis Reiph F. Powell, MD: Edger B. Smith, MD. Albuqueroue, NM	751	
CASE REPORTS		Sightid A. Mullier, MD
	8. H	Rochester, Minn
Sister Chromatid Eschanges in Bioom's Syndrome Charles H. Dicken, MD: Gordon Dewald, PhD:		
Hymie Gordon, MD. Rocheater, Minn	755	W. Mitchell Same, Jr. MC
Keratosis Follicularis Spinulosa Decalvans		Chapel Hill, NC
Helen Britton, MD; James Lustig, MD; Brende J. Thompson, MD; Steven Meyer, MD; Nancy B. Esterly, MD; Chicago	761	
Hyperimmunoglobulin E Syndrome		John S. Strauss, MD lows City
John Stanley, MD; Daniel Perez, MD; Irma Gigli, MD;		Iows City
Ina Goldstein, MD; Rudolf L. Baer, MD, New York	765	
Childhood Penghigus Treated With Gold Robert L. Paltzik, MD; Teresita A. Laude, MD, Brooklyn, NY	768	Gerald D. Weinstein, MD Miami
Unilateral Segmental Hyperhidrosis		
Aaron Dworin, MD; Arthur J. Sober, MD, Boston	770	

Origin of Familial Malignant Melanomas From Heritable Melanocytic Lesions Wallace H. Clark, Jr, MD, Philadelphia; Ronald R. Reimer, MD; Mark Greene, MD, Bethesda, Md; Ann M. Ainsworth, MD; Michael J. Mastrangelo, MD, Philadelphia

Clark et al. Arch Dermatol, 1978

Clark WH, Reimer RR, Greene M, Ainsworth AM, Mastrangelo MJ. Origin of Familial Malignant Melanomas From Heritable Melanocytic Lesions: `The B-K Mole Syndrome. Archives of dermatology (1960). 1978;114(5):732-738. doi:10.1001/archderm.1978.01640170032006

Pig 2

Fig.4, Left

Fig.4

Familial Malignant Welanomas-Clark

Fig 2.-Back of 27-year-old woman who had four primary malignant melanomas. Pattern and appearance of moles in patient with numerous lesions. Compare with Fig 6 for appearance of B-K moles sparse in number. Proband, family M.

Fig 3.-Constellation of moles from right posterior shoulder of patient shown in Fig. 2. Variability in form from lesion to lesion is shown.

Fig 4.-Left and Right. Backs of two brothers, both of whom had malignant melanoma. Two sisters also had mole pattern almost identical to pattern illustrated in right figure.

Fig 5.-Back of 27-year-old woman in April 1972. Note lesion in black circle. Compare with lesion No. 3 in Fig 6 and with Fig 6. inset, which show lesion 41/2 years later. Proband, family G.

Fig 6 and Inset.-Same patient as in Fig 5. Photograph taken November 1976. Transformation of B-K mole into malignant melanoma. Lesion indicated as No. 3 and, in closer view, in inset, is malignant melanoma of superficial spreading type. Histology of transformed lesion is shown in Fig. 12, 13, and 14. Proband, family G.

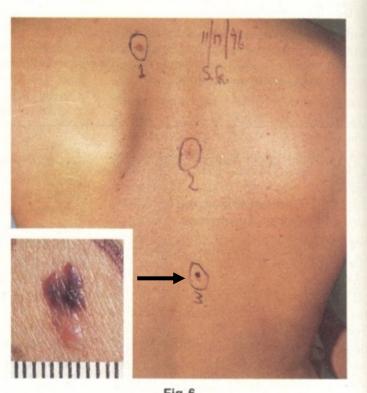


Fig 6

Their Conclusion

"It is proposed that the inherited nevic component of the B-K mole is more <u>susceptible to neoplastic transformation</u> than common acquired melanocytic nevi." (page 737)

The Jourses is a forum for open and esponsible discussion of matters relevant to the field of medicine. Its mission is education: to inform its readers of progress in clinical medicine, medical research, and of developments in other fields of interest to physiciana.

THE COVER

the American Medical Association

Withuling Editor: Drummond Revola, MD

Ing Editors: John P. Calan, MD, Charles B

N. WE Lawrence D. Groupe MD. Phil Munist S.

mar Correspo Notice Values Hollman, Calibering Mariak

other Managare Marlane M. House ant Production Manager: July R. Sayter

ant Editorial Processing Manager:

IC. Carlotta M. Rinka, MC

and Editors

George Stein (active late 19th to earl La Place de l'Opéra et le Caté de la I Franch. Gouache. 47x89 cm. Courtesy of the Galleries Meurice Developy, Chi

MEDICAL NEWS

Attempts to Vanguish Alzheimer's Curious Links Reported Betwe Steps Toward Staging, There

LEADS FROM THE MMWR

INSTRUCTIONS FOR AUTHORS

REFERENCE DIRECTORIES

Foreign Meetings

US Meetings, April 6: Organizations of Medical Interest, Jan 27: State Associations and Exams and Licensure, Jan 20; AMA Officials, April 6

LETTERS

Reliability of Measurements of Tricyclic Levels R. L. Bank, MD. Columbia, SC. LCDR Natisfity of Macaucanasti at Traysiti Levels R. L. Back, MC, Galvella, SC, LCDR D. A. Johnson, MD, MC, LDBR, LCDR T. V. Malas, MD, MC, LDBR, Portsmann, V. Lander, M. M. K. LDBR, Frank, MD, East Lander, MD, Back Statistica, MD, Mark C, Sand Y, Kang J, Kang J,

ORIGINAL CONTRIBUTIONS

Obstetric Complications as Risk Factors for Cerebral Paley or Seizure Disorders K. B. Nelson, MD, J. H. Elenberg, PhD, Bethesis, Mr	1843
Benigs' Monoclonal Gammopathy	1849
Harital and Family Therapy for Froubled Physicians and Their Families 1.0. Oks. MD, New York, J. F. Brus, MD, Boston	1855
BRIEF REPORT	
Lale Recurrence (Beyond Ten Years) of Cutaneous Malignant Melanoma N.K. Ka, Mel. A. J. Sow, AD T. B. Physens, MD, Boston	1859
CASE REPORT	
Rigration of Schrapnel From Lung to Bronchue	
CONSENSUS CONFERENCE	
Precursors to Malignant Melanoma	1864
DITORIALS	
Pres Major Challenges: Juality, Cost, and Balance F. J. Ana J. M. Okup	1867
Perinatal Risk and Cerebral Palay	1868

Vol 251, No. 14

100 Years

April 13, 1984

Of Continuous Publication

CONSENSUS CONFERENCE

Precursors to Malignant Melanoma

1827

1833

1984

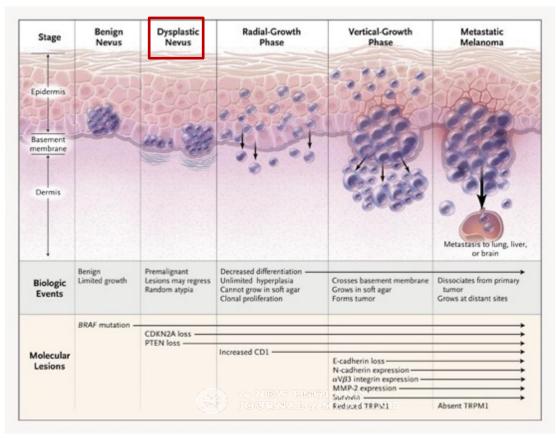
1864

Precursors to Malignant Melanoma. JAMA : the journal of the American Medical Association. 1984;251(14):1864-1866. doi:10.1001/jama.1984.03340380046022

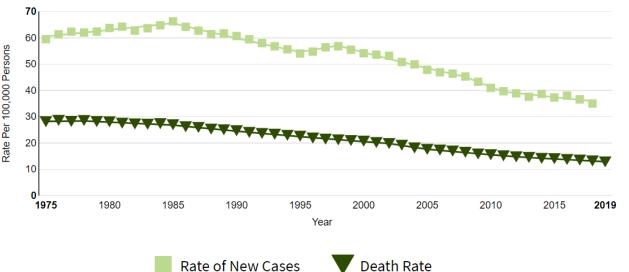
NIH Consensus Conference: Oct. 24-26, 1983

Identifying individuals with higher risk of developing melanoma

"The panel also agreed that the **dysplastic nevus**, a distinctive lesion both clinically and histologically, has been identified in this context, particularly in melanoma families. Dysplastic nevi are both <u>markers</u> and <u>precursors</u> for melanoma. Melanoma may develop also in congenital nevi, especially when the lesion is larger than 20 cm." (page 1864)

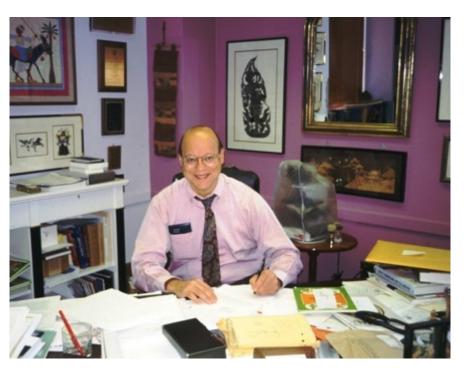

Stepwise Multi-Step Progression of Cancer

1. Initiation 2. Latent 3. Promotion 4. Malignant transformation


The continual accumulation of DNA mutations results in step-wise progression of neoplasia, the steps of which may be recognizable morphologically—e.g. metaplasia and dysplasia

Biologic Events and Molecular Changes in the Progression of Melanoma. Miller AJ, Mihm MC Jr. N Engl J Med 2006;355:51-65.

Colorectal Cancer Incidence & Mortality


- Reliable precursor lesion
 - polyps
- Effective screening
 program
 - early detection
 - effective treatment
- Reduction in mortality
 Reduction in incidence

Model for Precursor Detection & Cancer Prevention

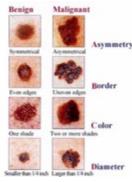
https://seer.cancer.gov/statfacts/html/colorect.html

Screen Precursor Lesions of Cancer to Decrease Morbidity & Mortality

"Malignant melanoma can be diagnosed clinically and histologically when it is small, flat, and confined to the epidermis."

A. B. Ackerman, 1983

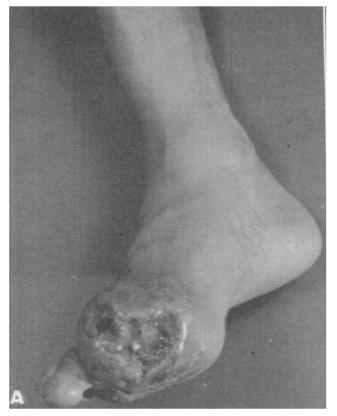
Ackerman AB. Macular and patch lesions of malignant melanoma: malignant melanoma in situ. *J Dermatol Surg Oncol* 1983;9:615-8.


Skin Cancer Awareness Campaigns

- Slip Slop Slap
- Skin Awareness For Everyone (SAFE)
- Fry Now Pay Later
- SunSmart
- Play Sun Smart
- ABCDs of Melanoma
- Melanoma Monday

Slip

Introduction of Dermatoscopy USA



Objectives of Dermatoscopy

- 1. Increase the diagnostic accuracy of melanoma, <u>especially early</u> <u>melanomas</u>
- 2. Decrease unnecessary harvesting of benign skin lesions

Improve the diagnostic SENSITIVITY and SPECIFICITY of melanoma

Melanoma Then & Now

JAAD Mar 2007

Cancer Jan-Feb 1960

When dermatologists diagnose melanomas

- Stage 0: Melanoma in-situ
- <u>Stage 1A</u>: 0.16mm to 0.80 mm in depth

(earlier stage than when patients or non-dermatologists detects melanomas)

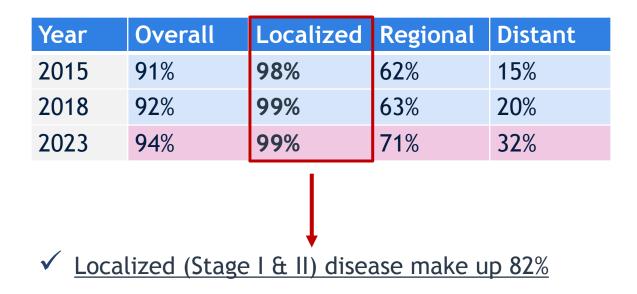
Carli P, De Giorgi V, Palli D, et al. Arch Dermatol. 2003;139:607-612. Pennie ML, Soon SL, Risser JB, et al. Arch Dermatol. 2007;143: 488-494. Kantor J, Kantor DE. Arch Dermatol. 2009;145: 873-876.

Table of Contents: Melanocytic Nevi & Melanoma

1. Brief Historical Perspective

2. Current Environment of Diagnosis

3. Illustrative Cases

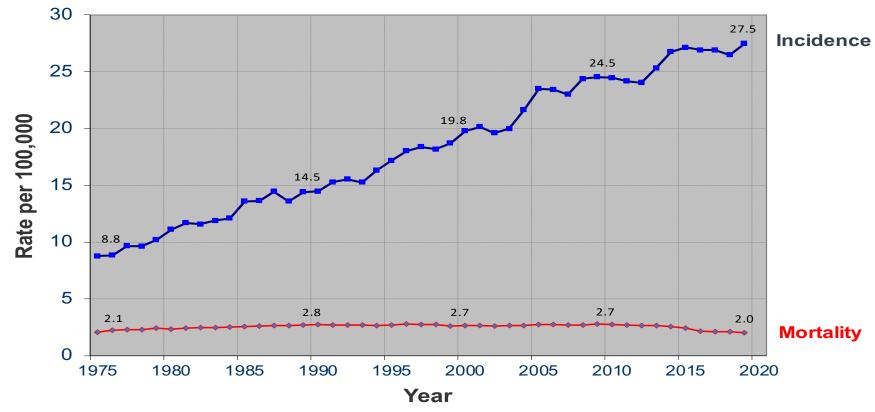

(2023 estimate)

	<u># cases</u>	<u># deaths</u>
Melanoma	97,610	7,990
Melanoma in-situ	90,000	

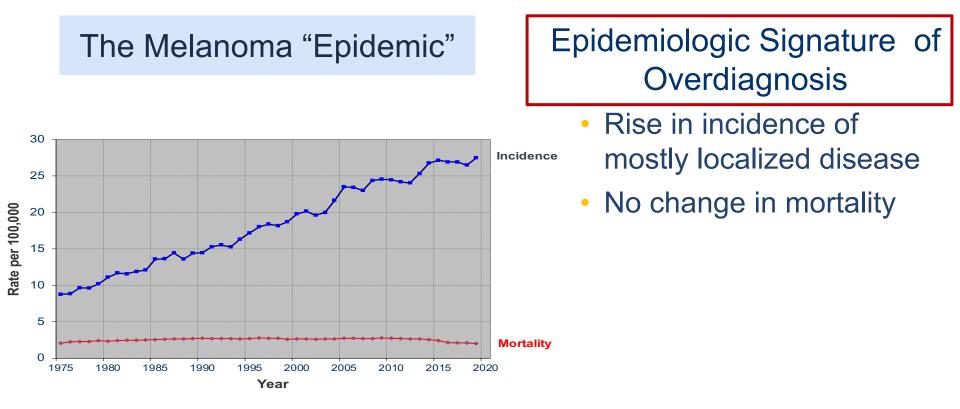
Breast	300,590	43,700
Lung	238,340	127,070
Prostate	288,300	34,700

Data from Cancer facts and figures 2023, BCC, SCC: 2022 estimate

5-year survival rate by stage


https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2023-cancer-facts-figures.html

5-year survival rate of cancers

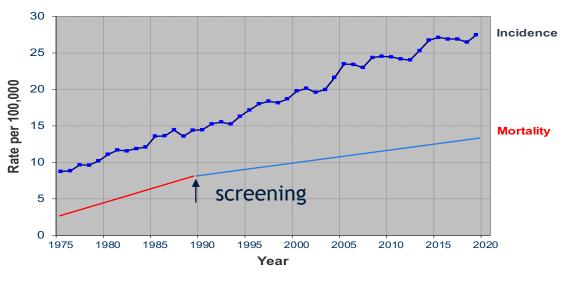

Cancers	%
Thyroid	98 %
Prostate	97 %
Testis	95%
Melanoma	94%
Breast	91 %
Merkel cell carcinoma	65%
Lung	23%
Esophagus	21%
Pancreas	12%

https://www.cancer.org/cancer/merkel-cell-skin-cancer/detection-diagnosis-staging/survival-rates.html 2018 https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures

The Melanoma "Epidemic"

https://seer.cancer.gov/statfacts/html/melan.html

Welch HG et al. N Engl J Med. 2019;381(14):1378-1386.


The Melanoma "Epidemic"

- NO screening captures 100% of the lethal cancer, providing a cure for each one with NO change in mortality
- <10% screened</p>
- Effective screening may prevent ≈50% mortality at most

Welch HG, Robertson DJ. Colorectal Cancer on the Decline – Why Screening Can't Explain It All. The New England journal of medicine. 2016;374(17):1605-1607. doi:10.1056/NEJMp1600448

The Melanoma "Epidemic"

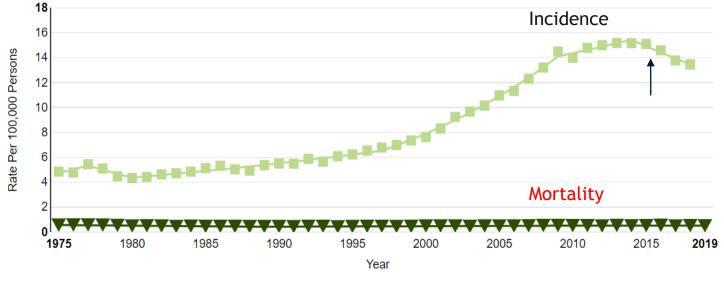
- NO screening captures 100% of the lethal cancer, providing a cure for each one with NO change in mortality
- <10% screened</p>
- Effective screening may prevent ≈50% mortality at most
- Mortality should rise with blunting of the slope with effective screening

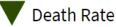
Welch HG, Robertson DJ. Colorectal Cancer on the Decline – Why Screening Can't Explain It All. The New England journal of medicine. 2016;374(17):1605-1607. doi:10.1056/NEJMp1600448

Epidemiologic Signature of Overdiagnosis

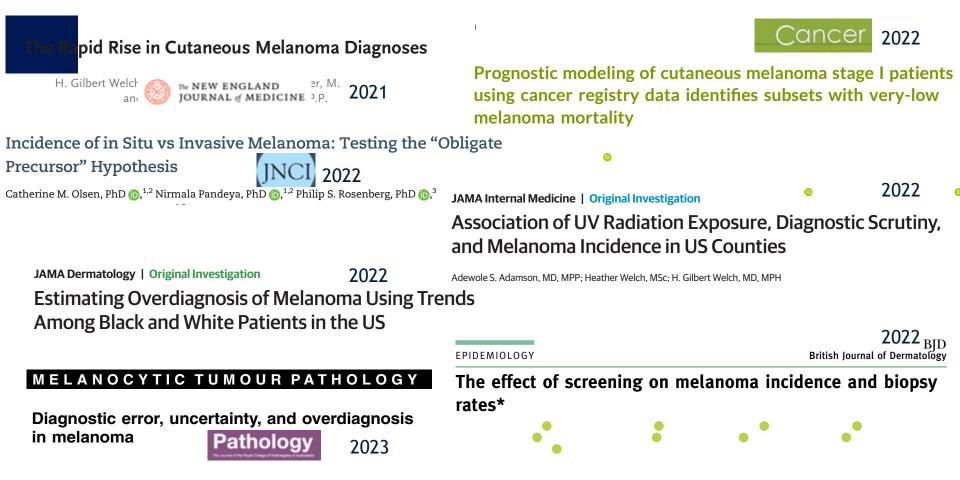
Melanoma Incidence and Mortality

Thyroid Cancer Incidence & Mortality


https://seer.cancer.gov/statfacts/html/melan.html


https://seer.cancer.gov/statfacts/html/thyro.html

USPSTF Thyroid Cancer Screening Guideline 2017


Recommendation Summary

Population	Recommendation	Grade
Adults	The USPSTF recommends against screening for thyroid cancer in asymptomatic adults.	D

Epidemiologic evidence of melanoma overdiagnosis is mounting

SOUNDING BOARD

The Rapid Rise in Cutaneous Melanoma Diagnoses

H. Gilbert Welch, M.D., M.P.H., Benjamin L. Mazer, M.D., M.B.A., and Adewole S. Adamson, M.D., M.P.P.

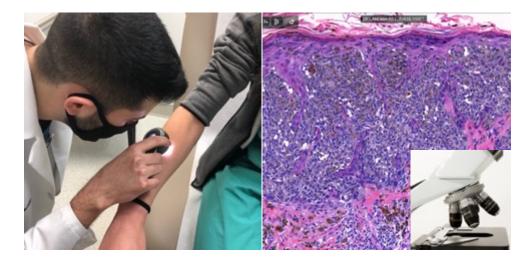
Recommendations to stop the cycle of overdiagnosis

- Stop population screening
- Curtail self-referral of skin-biopsy specimens
- Clinicians: raise the threshold to biopsy— don't bx lesions <6mm
- Pathologists
 - Increase the thresholds for labeling melanoma
 - Linguistic de-escalation: diagnose as "melanocytic neoplasm"

Welch HG et al. N Engl J Med. 2019;381(14):1378-1386.

SOUNDING BOARD

The Rapid Rise in Cutaneous Melanoma Diagnoses


H. Gilbert Welch, M.D., M.P.H., Benjamin L. Mazer, M.D., M.B.A., and Adewole S. Adamson, M.D., M.P.P.

"Pathologists could also pursue linguistic deescalation, specifically for melanoma in situ. A diagnosis of <u>"melanocytic neoplasm"</u> would be less distressing for patients and could reduce continued surveillance and overtreatment."

Overdiagnosis is Not discernable at the patient level

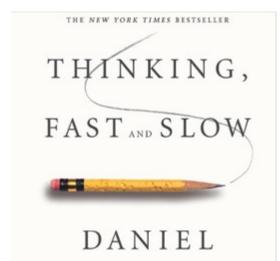
 Overdiagnosis is an epidemiological phenomenon

Clinicians and pathologists cannot see overdiagnosis

Which will progress?

Robra BP. (2021) Harms and Benefits of Cancer Screening. In: Bauer A.W., Hofheinz RD., Utikal J.S. (eds) Ethical Challenges in Cancer Diagnosis and Therapy. Recent Results in Cancer Research, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-030-63749-1_7

Environment of overdiagnosis


- Heightened awareness by patients and clinicians
- Pressure to diagnose melanomas early
- Fear of missing melanoma—"loss aversion"

Brodersen J, Schwartz LM, Woloshin S. Overdiagnosis: how cancer screening can turn indolent pathology into illness. APMIS. 2014;122(8):683-689. doi:10.1111/apm.12278

Cognitive process also contributes to overdiagnosis

- Everyone is subject to "loss aversion"
- Fear drives our decision making
- Clinician:
 - "When in doubt, cut it out"
- Dermatopathologist:
 - When in doubt, low threshold to label lesions atypical or melanoma
- Everyone errs on the side of caution

KAHNEMAN

WINNER OF THE NOBEL PRIZE IN ECONOMICS

"[A] masterpiece . . . This is one of the greatest and most engaging collections of

Environment of overdiagnosis

- Screening
- Sensitive to detecting small irregularities
- Large reservoir of indolent disease
- Diagnostic test: questionable reliability

Brodersen J, Schwartz LM, Woloshin S. Overdiagnosis: how cancer screening can turn indolent pathology into illness. APMIS. 2014;122(8):683-689. doi:10.1111/apm.12278

Gold Standard

Pathologic Diagnosis

2017 BMJ

Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study

Joann G Elmore,¹ Raymond L Barnhill,² David E Elder,³ Gary M Longton,⁴ Margaret S Pepe,⁴ Lisa M Reisch,¹ Patricia A Carney,⁵ Linda J Titus,⁶ Heidi D Nelson,^{7,8} Tracy Onega,^{9,10} Anna N A Tosteson,¹¹ Martin A Weinstock,^{12,13} Stevan R Knezevich,¹⁴ Michael W Piepkorn^{15,16}

25%: Concordance rate for Spitz nevi and atypical nevi 45%: Concordance rate for atypical spitz tumor, severely atypical nevi, MIS

"Diagnoses spanning moderately dysplastic nevi to early stage invasive melanoma [Stage 1] were neither reproducible nor accurate in this large study of pathologists in the USA."

Pathology: Diagnostic Gold Standard

- 100% subjective
- Discordance abound (particularly for thin small melanocytic lesions)

Elmore JG, Barnhill RL, Elder DE, et al. Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study [published correction appears in BMJ. 2017 Aug 8;358:j3798]. BMJ. 2017;357:j2813.

Histopathologic Diagnosis reliable unreliable

Categories of Melanomas

- 1. slow-growing melanomas
 - \propto chronic sun exposure occurring on the head and neck
- 2. slow-growing melanomas
 - ∞ intermittent sun exposure and melanocytic nevi
- 3. fast-growing aggressive melanomas
 - NOT associated with sun exposure and melanocytic nevi
- 4. unrecognizable melanomas

Screening usually detects slow-growing indolent cancers

Lipsker D, Engel F, Cribier B, Velten M, Hedelin G. Trends in melanoma epidemiology suggest three different types of melanoma. British journal of dermatology (1951). 2007;157(2):338-343. Pampena R, Lai M, Lombardi M, et al. Clinical and Dermoscopic Features Associated With Difficult-to-Recognize Variants of Cutaneous Melanoma: A Systematic Review. JAMA Dermatol. 2020;156(4):430-439.

When dermatologists diagnose melanomas

- Stage 0: Melanoma in-situ
- Stage 1A: 0.16mm to 0.80 mm in depth

(earlier stage than when patients or non-dermatologists detects melanomas)

Carli P, De Giorgi V, Palli D, et al. Arch Dermatol. 2003;139:607-612. Pennie ML, Soon SL, Risser JB, et al. Arch Dermatol. 2007;143: 488-494. Kantor J, Kantor DE. Arch Dermatol. 2009;145: 873-876.

Fast growing + Unrecognizable melanomas


- More common in older men
- Lacks the ABCD signs of slow growing melanoma
- Nonspecific appearance
 - Misdiagnosed as <u>BCC</u>, seborrheic keratosis, scar, hemangioma, dermatofibroma, skin tag & inflammatory diseases
- Not amenable to screening—grows too fast + not recognizable

Liu W, Dowling JP, Murray WK, et al. Rate of growth in melanomas: characteristics and associations of rapidly growing melanomas. Arch Dermatol. 2006;142:1551-1558.

Demierre MF, Chung C, Miller DR, Geller AC. Early detection of thick melanomas in the United States: beware of the nodular subtype. Arch Dermatol. 2005;141:745-750.

Not the obligate precursor

Melanoma in-situ

Not the obligate precursor

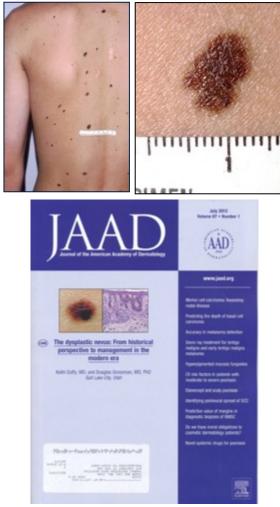

Melanoma in-situ

Incidence of in Situ vs Invasive Melanoma: Testing the "Obligate Precursor" Hypothesis J Natl Cancer Inst. 2022

Catherine M. Olsen, PhD (),^{1,2} Nirmala Pandeya, PhD (),^{1,2} Philip S. Rosenberg, PhD (),³

- Analyzed incidence trend in-situ and invasive melanomas 3 decades
- MIS as an obligate precursor model
 - Increase MIS should be detected earlier age than invasive melanoma
 - Decrease in thick deadly melanomas should be observed
- Findings
 - Increased MIS detection at older age than invasive melanoma
 - No decrease in thick deadly melanomas
- Conclusion
 - Questions MIS being the obligate precursor to invasive melanoma

Olsen CM, Pandeya N, RosenbergPS, Whiteman DC. Incidence of in-situ vs invasive melanoma: testing the "obligate precursor" hypothesis. J Natl Cancer Inst. 2022;114(10):1364-1370.



CONSENSUS CONFERENCE 1984 Precursors to Malignant Melanoma 1864

NIH Consensus Conference: Oct. 24-26, 1983

"The panel also agreed that the **dysplastic nevus**, a distinctive lesion both clinically and histologically, has been identified in this context, particularly in melanoma families. Dysplastic nevi are both <u>markers</u> and <u>precursors</u> for melanoma. Melanoma may develop also in congenital nevi, especially when the lesion is larger than 20 cm." (page 1864)

Precursors to Malignant Melanoma. JAMA: the journal of the American Medical Association. 1984;251(14):1864-1866.

Jul 2012

CONTINUING MEDICAL EDUCATION

The dysplastic nevus: From historical perspective to management in the modern era

Part I. Historical, histologic, and clinical aspects

Conclusion

- ✓ Marker for high-risk individual
- Not a precursor

Duffy K, Grossman D. The dysplastic nevus: from historical perspective to management in the modern era: part II. Molecular aspects and clinical management. J Am Acad Dermatol. 2012;67(1):19.e1-32. doi:10.1016/j.jaad.2012.03.013

Histologic Outcomes of Excised Moderate and Severe Dysplastic Nevi Derm Surg 2014

MARIA V. ABELLO-POBLETE, MD, LILIA M. CORREA-SELM, MD, DANIELLE GIAMBRONE, BS, FRANK VICTOR, MD, FAAD, AND BABAR K. RAO, MD, FAAD*

Outcomes of Biopsies and Excisions of Dysplastic Acral Nevi: A Study of 187 Lesions Derm Surg 2014

TARA BRONSNICK, BA,* NADEEM KAZI,[†] A. YASMINE KIRKORIAN, MD,* AND BABAR K. RAO, MD*

A nongrading histologic approach to Clark (dysplastic) nevi: A potential to decrease the excision rate

Daniel F. Lozeau, MD, Michele J. Farber, MD, and Jason B. Lee, MD Philadelphia, Pennsylvania **JAAD 2016**

JAMA Dermatology | Original Investigation

Reexamining the Threshold for Reexcision of Histologically Transected Dysplastic Nevi

JAMA Derm 2016

JAMA Dermatology | Original Investigation

Risk of Subsequent Cutaneous Melanoma in Moderately Dysplastic Nevi Excisionally Biopsied but With Positive **Histologic Margins** JAMA Derm 2018

Re-excision studies

- These studies showed none to very low association with melanoma when dysplastic nevi are re-excised
- Recommendation is to monitor and not re-excise

Annual Transformation Rate of Nevus to Melanoma

Too low to remove or monitor

- <1 in 200,000 (age less than 40)
- 1 in 33,000 (age greater than 60)

Tsao et al. Arch Dermatol 2003;139:282-8

Efforts to minimize re-excision of dysplastic nevi AAD Effort WHO

AAD AAD Associatio	97 n	DONATE 💟	OR PUBLIC AND PATIENTS	📅 STORE
MEMBERSHIP	MEETINGS & EDUCATION	PRACTICE MANAGEMENT	CLINICAL & QUALITY	PUBLICATIONS & APPS

Mildly Atypical Dysplastic Nevi – Appropriate Non-Excision

Description: Percentage of procedures with histologically proven dysplastic nevus/mild atypia that are NOT excised by the biopsying physician and are NOT referred to others for excision.

Measure ID: AAD13

Type: Process/Overuse

CMS Derm Specialty Set: N/A

High priority: Yes

Topped out: No

Telehealth Eligible: No

Reporting methods: Registry/QCDR

Maximum points: 7

Measure purpose: This measure aims to reduce the excision of mildly dysplastic nevus/mild atypia.

Table 1, Nuclear features in the varying grades of dysplasia³

WHO Classification	Former grade	Nuclear size vs resting basal cells	Chromatin	Variation in nuclear size and shape	Nucleoli
Not a dysplastic naevus	0 (Mild dysplasia)	1x	May be hyperchromatic	Minimal	Small or absent
Low grade dysplasia	1 (Moderate dysplasia*)	1-1.5x	Hyperchromatic or dispersed chromatin	Prominent in a small minority of cells (random atypia)	Small or absent
High grade dysplasia	2 (Severe dysplasia*)	≥1.5x	Hyperchromatic, coarse granular chromatin, or peripheral condensation	Prominent in a larger minority of cells	Prominent, often lavender

*Architectural features are required for the diagnosis of dysplasia (see Table 2) and also contribute to grade; attributes that indicate a diagnosis of high grade (severe) dysplasia, even when cytological atypia is low grade; include pagetoid scatter above the basal layer (but to a lesser degree than in melanoma, usuality not above the middle third, and focal, i.e. contained within an area <0.5mm²), focal continuous basal proliferation, and intraepidermal mitoses lany dermal mitosis or anything more than a rate mitose should raise concern for melanoma).

Low & *High* grade only classification of dysplastic nevi

https://www.aad.org/member/practice/mips/measures/2022/aa d13 (not 2023)

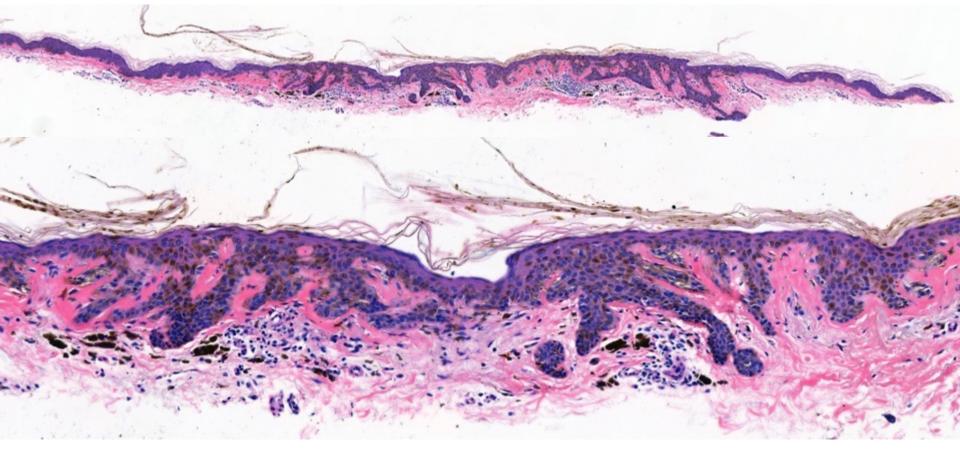
Elder DE, Massi D, Scolyer RA, Willemze R, editors (2018). WHO classification of skin tumours. 4th Ed. Lyon: IARC

Table of Contents: Melanocytic Nevi & Melanoma

- 1. Brief Historical Perspective
- 2. Current Environment of Diagnosis
- 3. Illustrative Cases

Case 1

Hip, left (Skin) Clinical Diagnosis: MELANOCYTIC NEVUS R/O ATYPIA


Clinical Description: Gross Description:

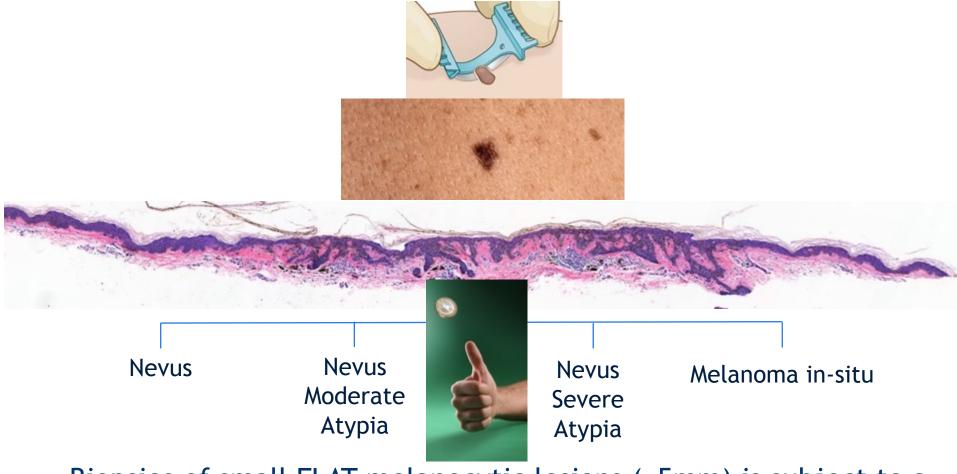
Received in a formalin-containing bottle is a cylindrical piece of skin and adipose tissue measuring 0.4 by 0.4 by 0.2 cm. The specimen is submitted entirely in a single cassette. Due to shrinkage, measurements may be different than those at time of procedure.

ICD-10:

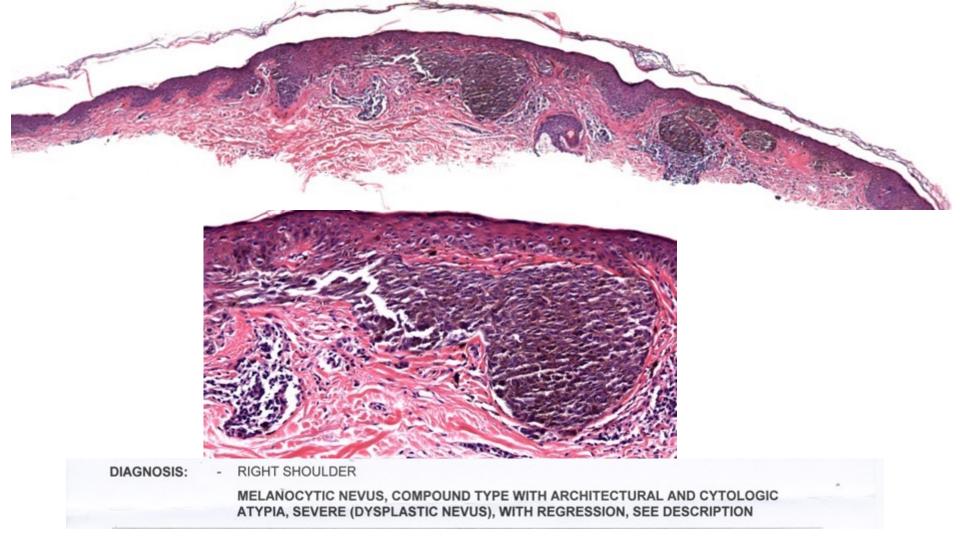
D48.5

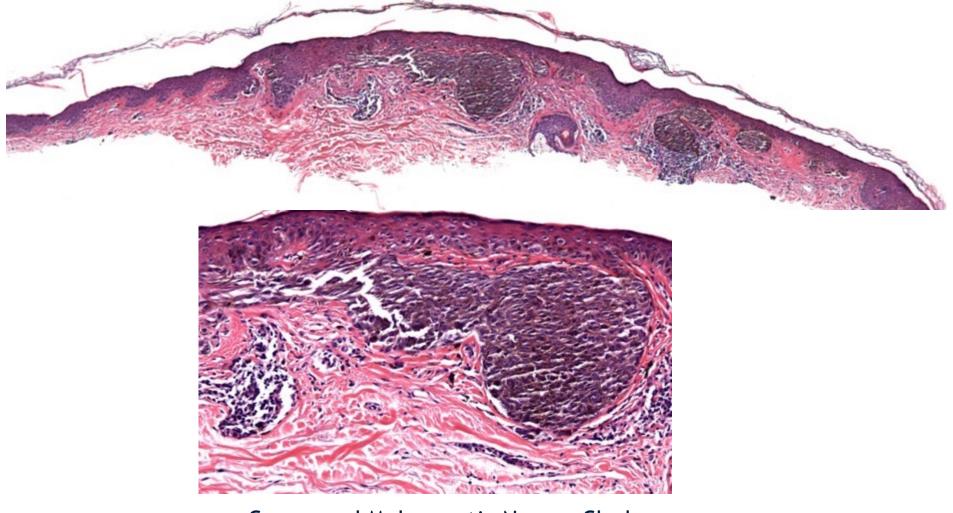
Dysplastic Nevus with Moderate Dysplasia Excision Recommended

Junctional Clark Nevus


2017 BMJ

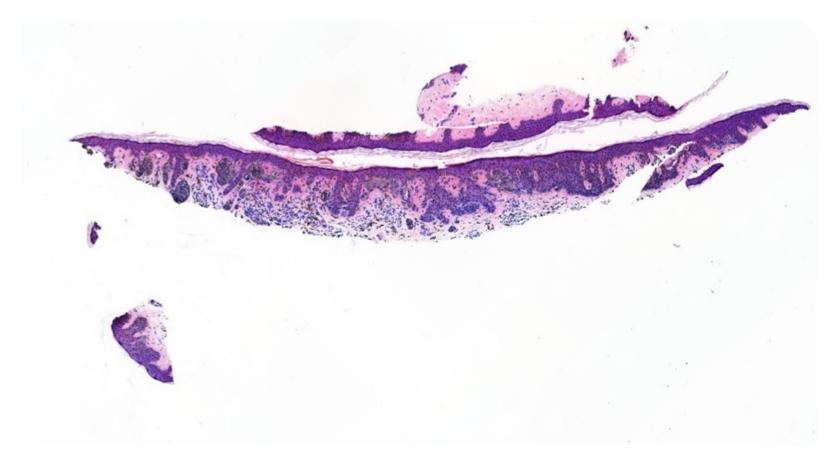
Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study

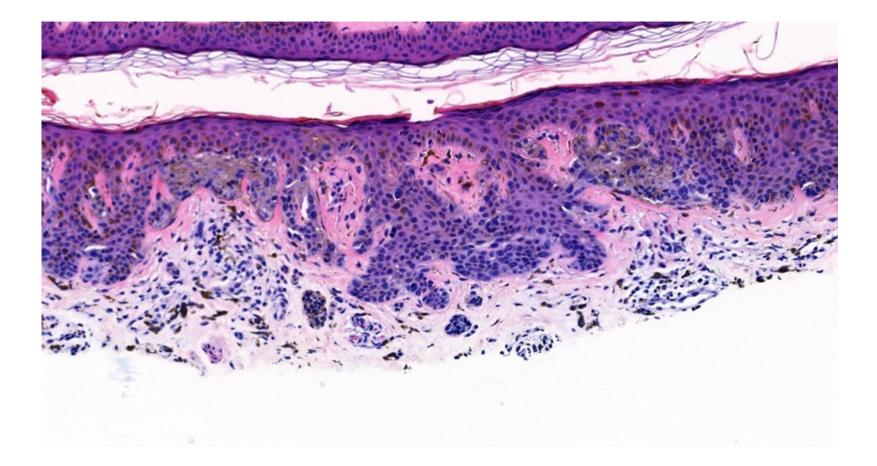

Joann G Elmore,¹ Raymond L Barnhill,² David E Elder,³ Gary M Longton,⁴ Margaret S Pepe,⁴ Lisa M Reisch,¹ Patricia A Carney,⁵ Linda J Titus,⁶ Heidi D Nelson,^{7,8} Tracy Onega,^{9,10} Anna N A Tosteson,¹¹ Martin A Weinstock,^{12,13} Stevan R Knezevich,¹⁴ Michael W Piepkorn^{15,16}


25%: Concordance rate for Spitz nevi and atypical nevi 45%: Concordance rate for atypical spitz tumor, severely atypical nevi, MIS

"Diagnoses spanning moderately dysplastic nevi to early stage invasive melanoma [Stage 1] were neither reproducible nor accurate in this large study of pathologists in the USA."

Biopsies of small FLAT melanocytic lesions (<5mm) is subject to a diagnostic gold standard that has questionable reliability





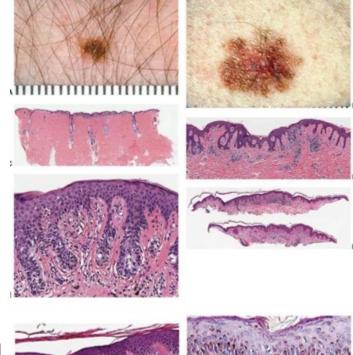
Compound Melanocytic Nevus, Clark

Case 2

51 yo woman, back

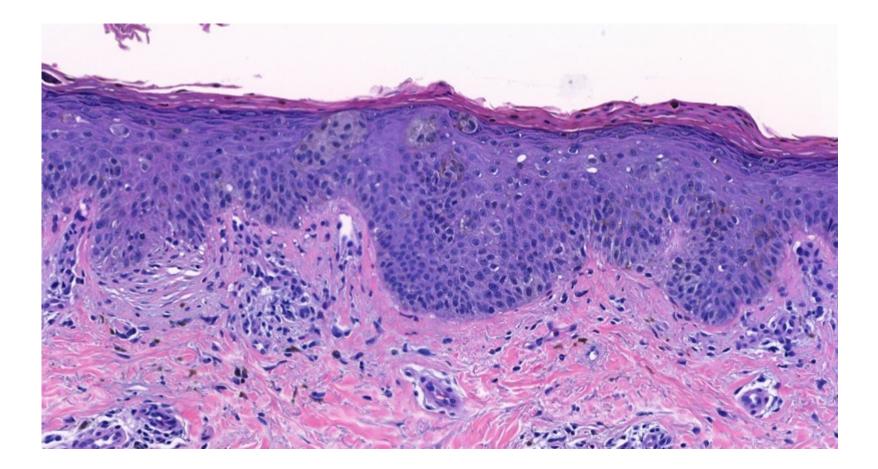
Part B: SKIN BIOPSY, MID BACK: COMPOUND MELANOCYTIC NEVUS OF THE SKIN WITH ARCHITECTURAL DISORDER AND SEVERE CYTOLOGIC ATYPISM OF THE MELANOCYTES. (DYSPLASTIC NEVUS, SEVERE). MARGINS ARE INVOLVED. A COMPLETE LOCAL

EXCISION IS ADVISED WITH 5 MM LESION FREE MARGINS. B. Back, Mid, : *Compound Melanocytic Nevus, Clark* There was no atypia noted within the specimen.


Dysplastic/Atypical/Clark Melanocytic nevus

Histopathologic Criteria for Dysplastic Nevus

- 1. Lentiginous hyperplasia
- 2. Bridging of rete-ridges
- 3. Lamellar and concentric fibroplasia
- 4. Lymphocytic infiltrate
- 5. Intradermal component, when present confined to the expanded papillary dermis in the center of the lesion
- 6. Random cytologic atypia greater than 10%
- Grading of cytology: mild, moderate, severe
- Grading of architecture: mild, moderate, severe


Lever's Histopathology of Skin, Elder DE, Murphy GF, Xiaowei X editors, in Chap 28 p Benign Pigmented Lesions and Malignant Melanoma, p1916-28

Dysplastic/Atypical/Nevus

- None to minimal association with melanoma
- Most common type of nevus on Caucasian skin
- Pivoting away from aggressive diagnosis and management
- Histopathology
 - Nested and solitary melanocytes at the DE junction
 - Allow for
 - some uneven distribution melanocytes
 - site specific variation
 - cytology varies widely and is usually larger than the background melanocytes

28 yo woman, forearm lesion

DERMATOPATHOLOGY REPORT

Dermatopathology (Fina	DP21-08415			
Authorizing Provider:		Ordering Provider:		
Ordering Location:	Jefferson Dermatology Center City	Collected:	05/17/2021 05:46 PM	
Pathologist:	Jason B Lee, MD	Received:	05/19/2021 06:06 PM	_

Diagnosis

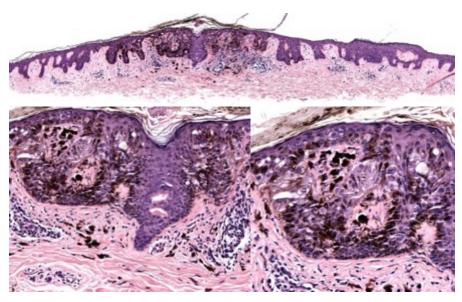
Right forearm: Junctional Melanocytic Nevus, Spitz, Pigmented (Reed Nevus) with Atypical Features Melan A immunohistochemical stain revealed the scatter of melanocytes associated with foci of prominent parakeratosis and serous crust. The marked scatter is most likely due to trauma at this site. Because of the significant scatter, excision of the lesion margins that include normal unscarred skin is recommended. The proliferation EXTENDS to peripheral margins.

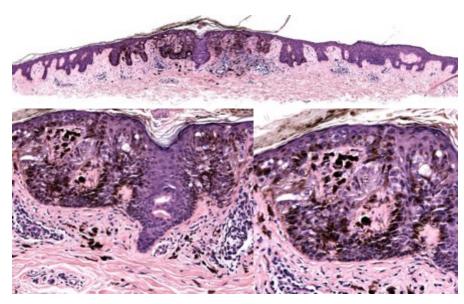
Electronically signed by Jason B Lee, MD on 5/21/2021 at 5:16 PM

FINAL REPORT (08/11/22)

Diagnosis:

Right forearm - RESIDUAL MELANOMA IN-SITU, FOCALLY SPITZOID (SEE NOTE)


Note:

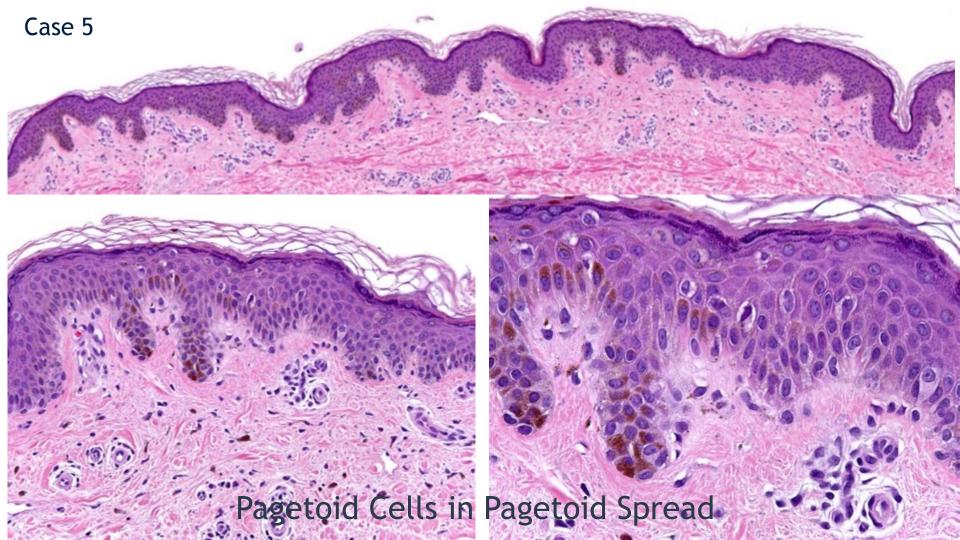

Prior to reviewing the original sections, the differential diagnosis was between pseudo-melanoma in-situ (residual atypical Spitz news with the melanomatous features secondary to previous procedure) and melanoma in-situ. In the context of the re-excision, the previous outside sections (DP21-08415 Jefferson Dermatopathology) are most consonant with melanoma in-situ with spitzoid features rather than an atypical Spitz news. A few neoplastic melanocytes on the re-excision appear to be in the dermis, however, those changes are interpreted as being secondary to tangential sectioning of melanocytes involving epithelial structures of adnexa rather than authentic neoplasm in the dermis. The lesion is completely excised in this multiply-sectioned specimen, although it extends to within just over 2 mm of one lateral margin from approximately 9:00 to 10:00 (suture marks 12:00). Case 4

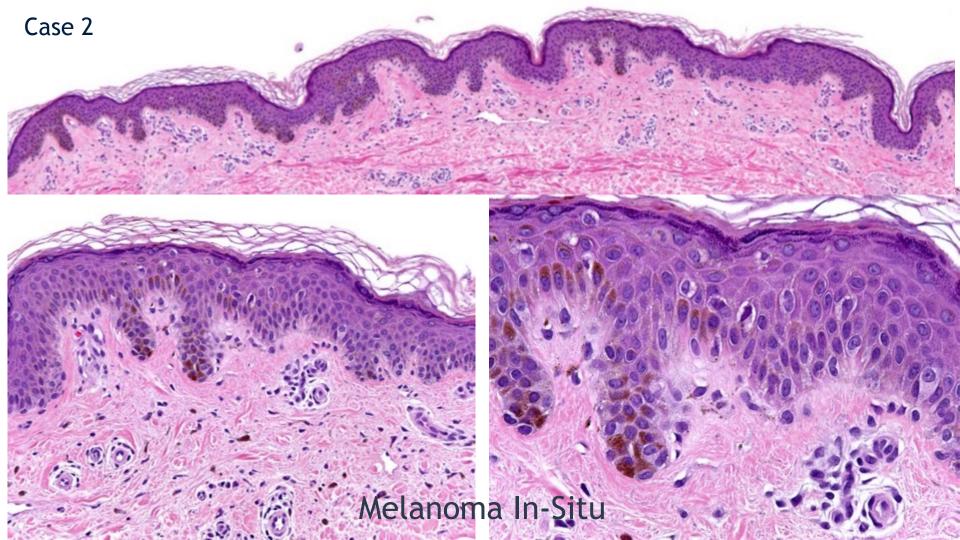
What is the diagnosis?

68 yo man

Melanoma In-Situ (opinion of one dermatopathologist)

Pigmented Spitz Nevus (opinion of another dermatopathologist)

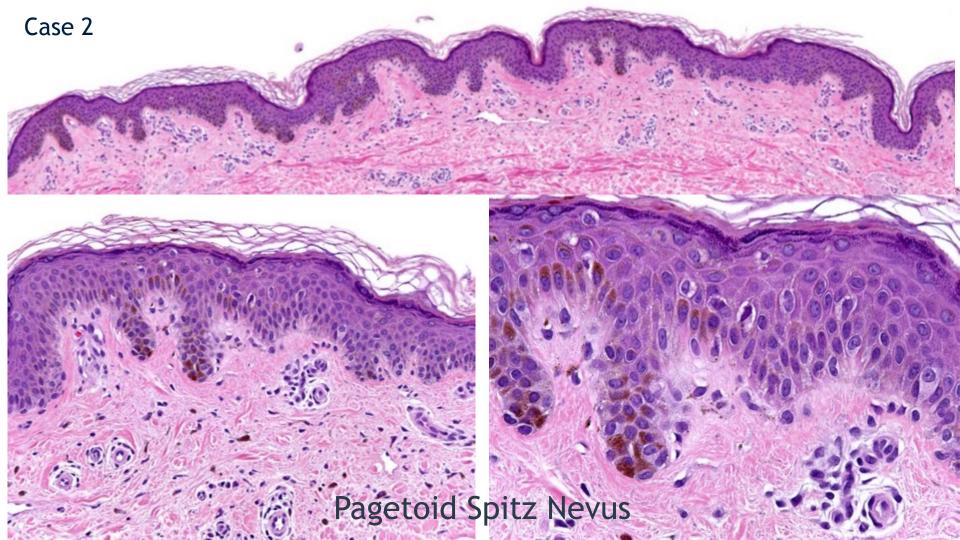

Expected site specific variation on architecture and cytology that are frequently interpreted as


atypical or melanoma

Body sites at risk of misdiagnosis as <u>melanoma—"special site"</u>

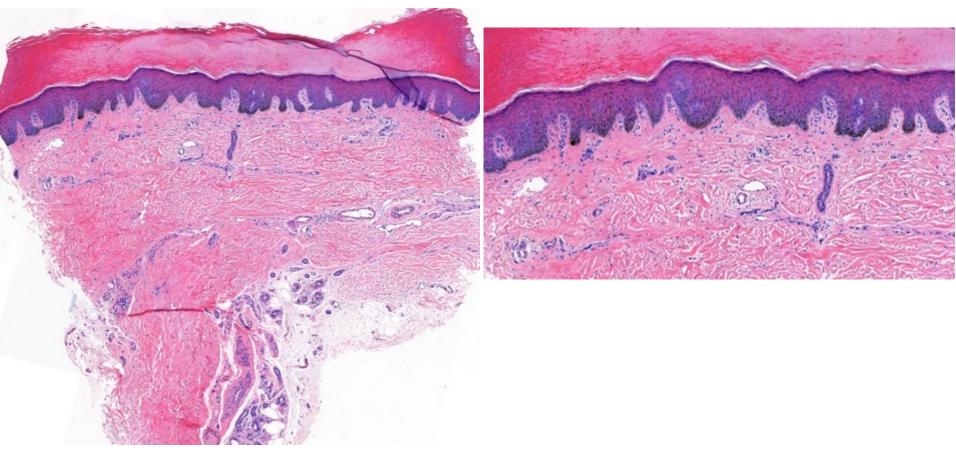
- Volar(Acral) skin
- Thigh
- Shin/Ankle
- Ear
- Breast/Milk line
- Genitalia
- Umbilicus
- Shoulder
- Scalp

Cecinaro AM et al. Am J Dermatopathol 2016;38:867–881 Hosler GA, J Cutan Pathol 2008; 35: 889–898



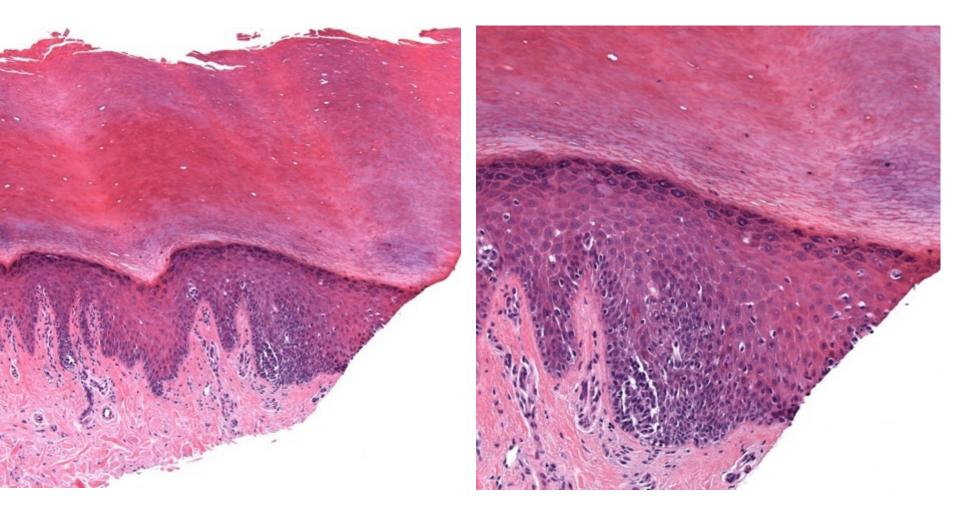
61 yo woman

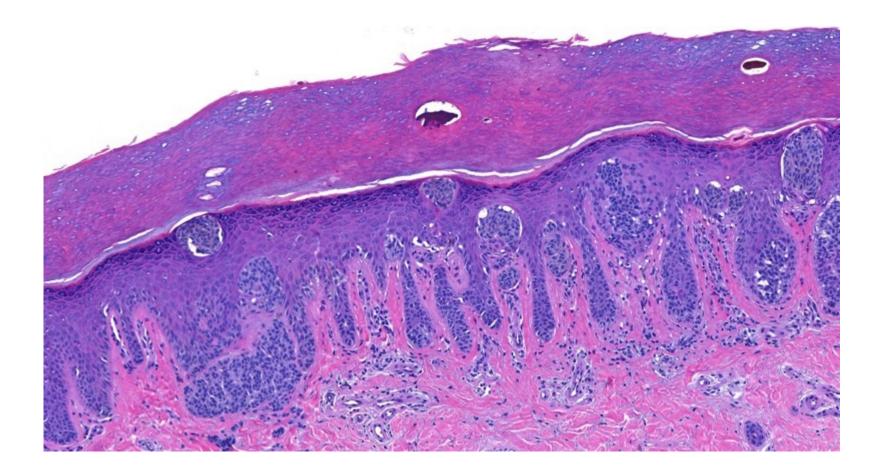
Pagetoid Spitz nevus

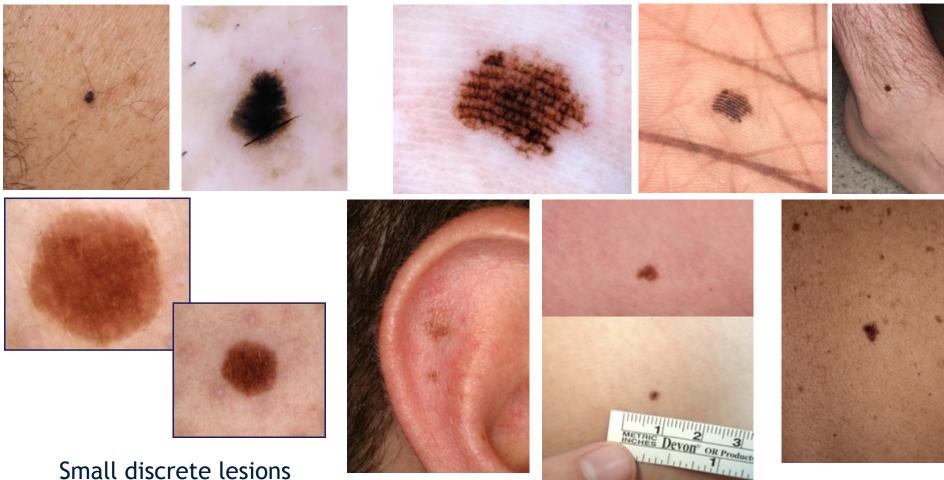

Thigh nevi

Frequent spitzoid features with some scatter

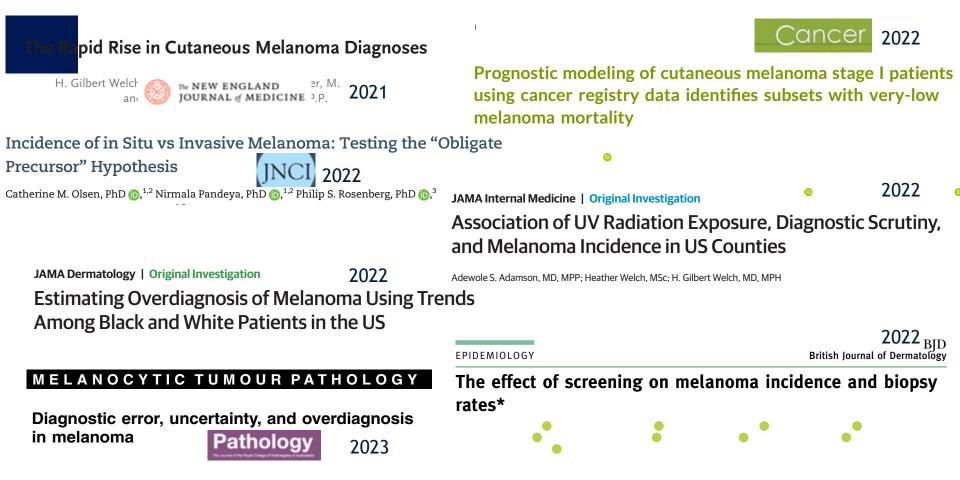

- "Spark" nevi
- Pagetoid Spitz nevi
 - Frequently found on the thigh of young and older adult women
 - Histology: solitary spitzoid melanocytes with significant scatter
 - Frequently misdiagnosed as MIS or thin melanoma
 - Benign: small, discrete, and uniform color


Chung J, Yuan ZM, Lee JB. Clinical and histopathological features of pagetoid Spitz nevi of the thigh. J Cutan Pathol. 2020;47(12):1143–1149 Donati, Pietro et al. *Am J Dermatopathol* 34.8 (2012): 853–855


Case 6



- Volar skin nevi
 - signouts are usually aggressive with excision recommendations
- This lesion is benign
 - small & discrete
 - mostly nested melanocytes are at the DE junction
 - expect mild to moderate degree of scatter of solitary melanocytes and even nests



Small discrete lesions No clinical features of melanoma

Epidemiologic evidence of melanoma overdiagnosis is mounting

Era of Molecular Testing:

- 1. Derm Tech Pigmented Lesion Assay [Gene Expression Profiling (qRT-PCR)]
- 2. MyPath ® & Decision Dx DiffDx-MelanomaTM [Gene Expression Profiling (qRT-PCR)] Prognostication
- 3. Fluorescence In-Situ Hybridization (FISH) Multiprobe Assay
- 4. Array Comparative Genomic Hybridization (aCGH)
- 5. Decision Dx-MelanomaTM [Gene Expression Profiling (qRT-PCR)]
- 6. Caris Lifesciences: NGS mutational analysis for diagnosis & treatment

myPath ® [GEP (qRT-PCR)]

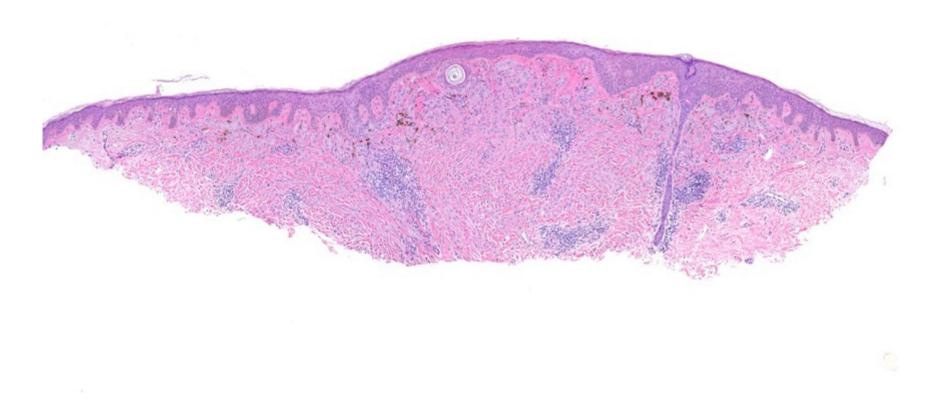
(1)		n	nyPa	th® N	/lelar	noma	Scor	'e: -1	.5			
40		-12	10				ļ			;			10
-10	-14	-12	-10 Be	-0 nign	-0	-4	-2 Indete	 rminate	2	4 Ma	0 Ignant	8	10

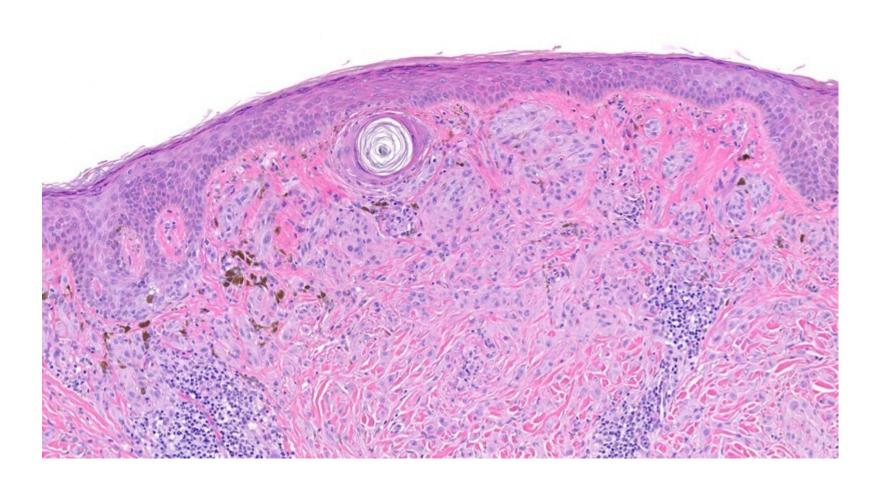
MyPath ▶Melanoma

+ score: melanoma

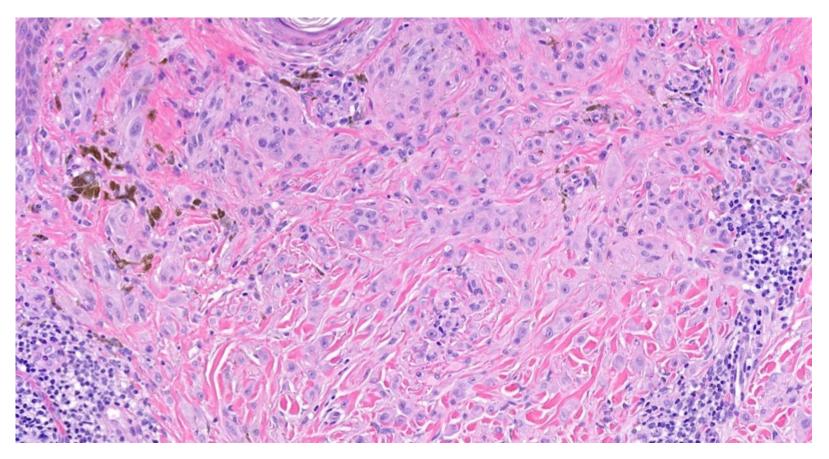
- score: nevus
- 0 to 2: gray zone

23 genes includes PRAME


PRAME: Preferentially expressed antigen in melanoma


- PRAME used in several gene expression profiling tests
 - DermTech PLA: guidance on the decision to biopsy
 - Decision Dx-UM: uveal melanoma prognosis
 - myPath Melanoma: cutaneous melanocytic lesions
- PRAME IHC
 - Sensitivity: 67%-83%
 - Specificity: 93%-97%

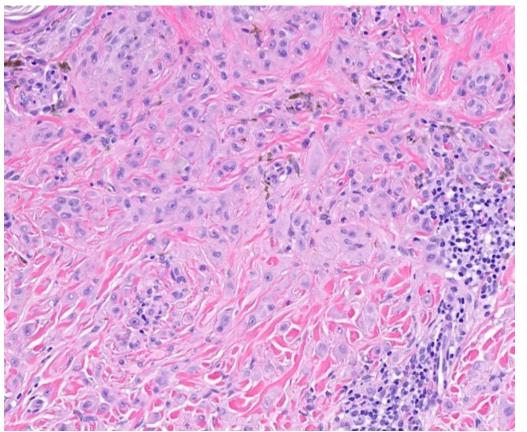
- O'Connor MK, Dai H, Fraga GR. PRAME immunohistochemistry for melanoma diagnosis: A STARD-compliant diagnostic accuracy study. *J Cutan Pathol*. 2022;49(9):780-786. doi:10.1111/cup.14267
- Lezcano C, Jungbluth AA, Nehal KS, Hollmann TJ, Busam KJ. PRAME Expression in Melanocytic Tumors. The American journal of surgical pathology. 2018;42(11):1456-1465. doi:10.1097/PAS.000000000001134


Case 7

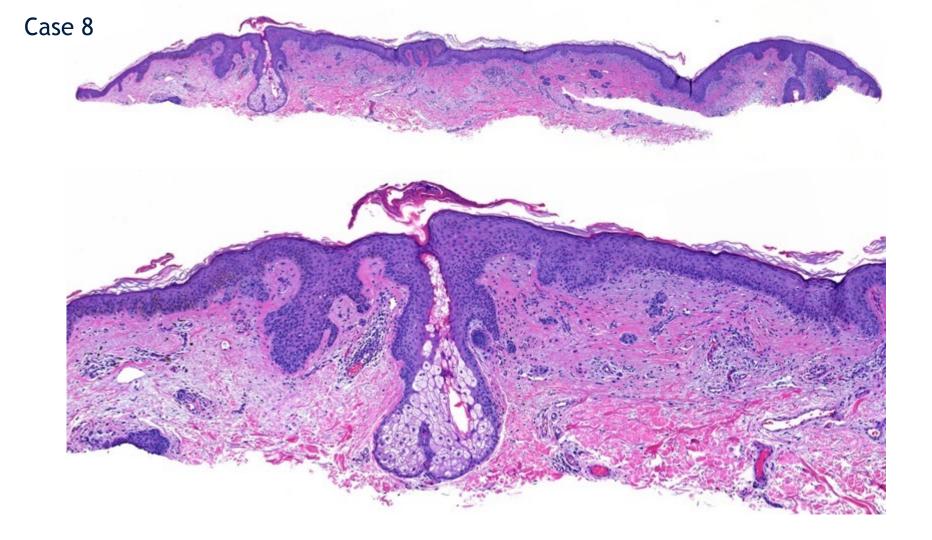
52 yo, chest lesion

Spitzoid Lesion

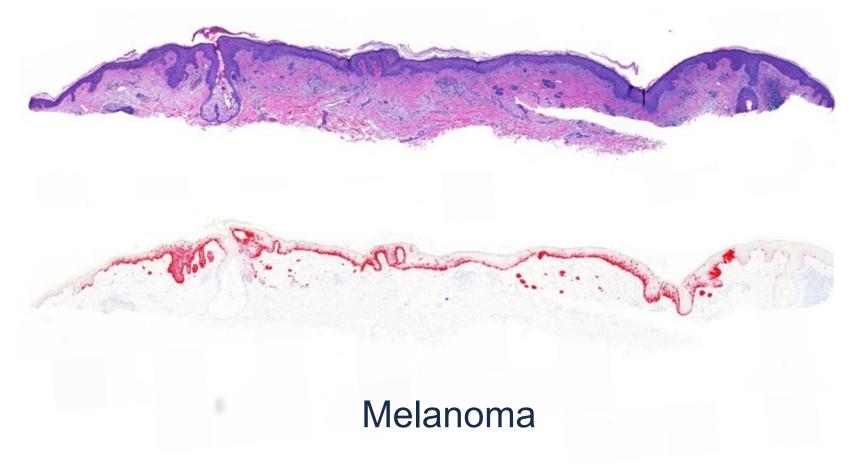
Spitz Nevi

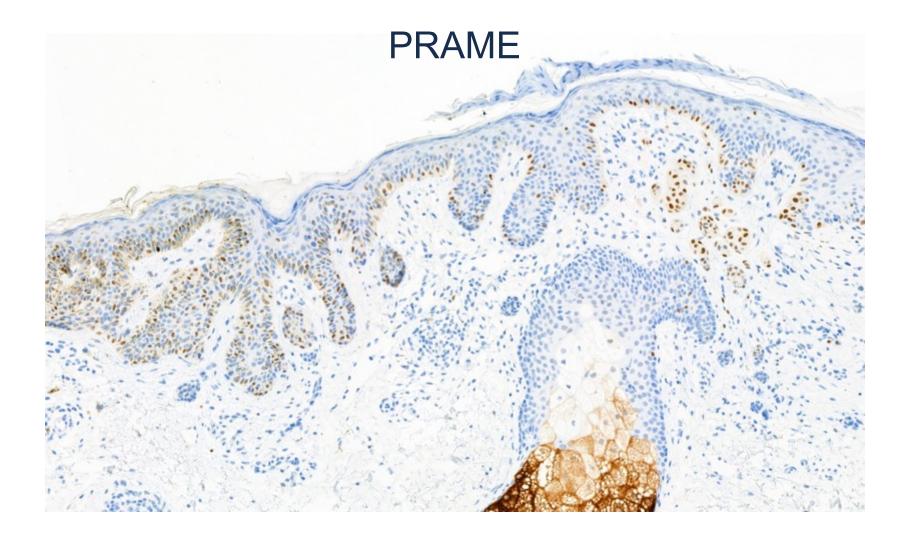

- More common in pediatric population to young adults
- Not as common in older adults

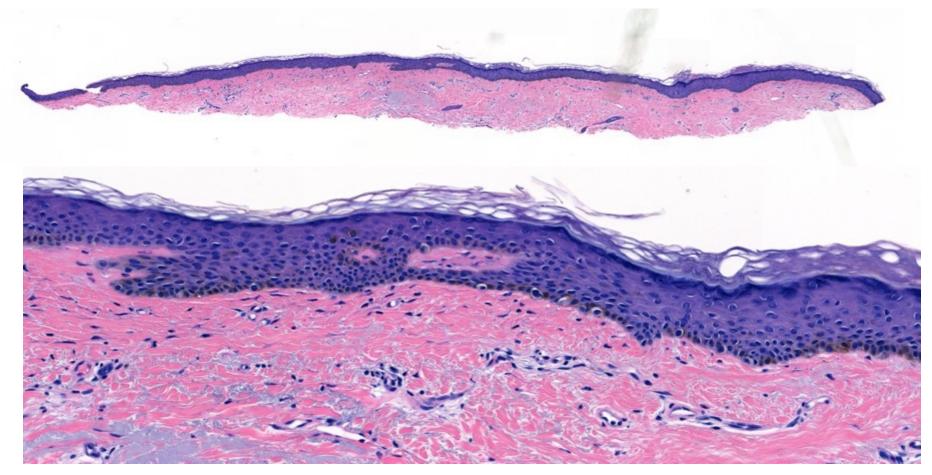
- BRAF: negative
- PRAME: 20%+
- TERT mutation: negative


Motaparthi K, Kim J, Andea AA, et al. TERT and TERT promoter in melanocytic neoplasms: Current concepts in pathogenesis, diagnosis, and prognosis. Journal of cutaneous pathology. 2020;47(8):710-719. doi:10.1111/cup.13691

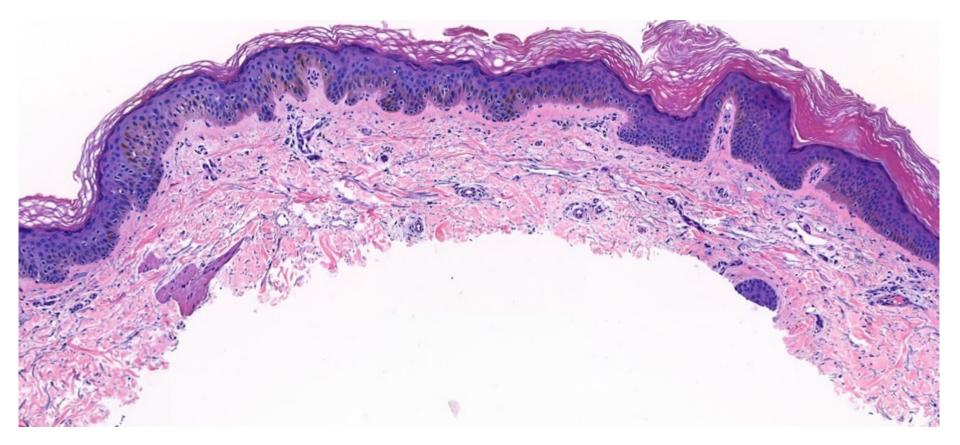
Koh SS, Lau SK, Scapa JV, Cassarino DS. PRAME immunohistochemistry of spitzoid neoplasms. Journal of cutaneous pathology. 2022;49(8):709-716. doi:10.1111/cup.14245

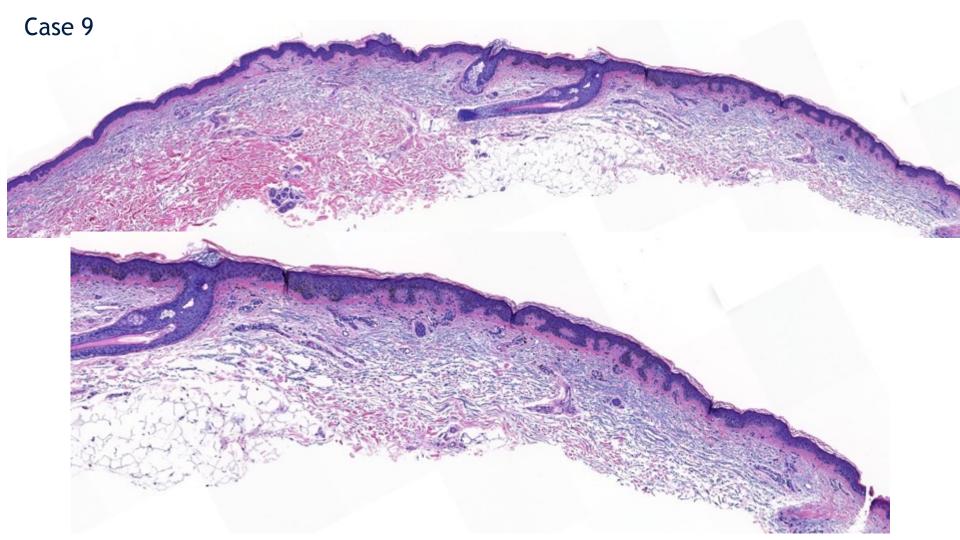

Spitz nevus in an older adult

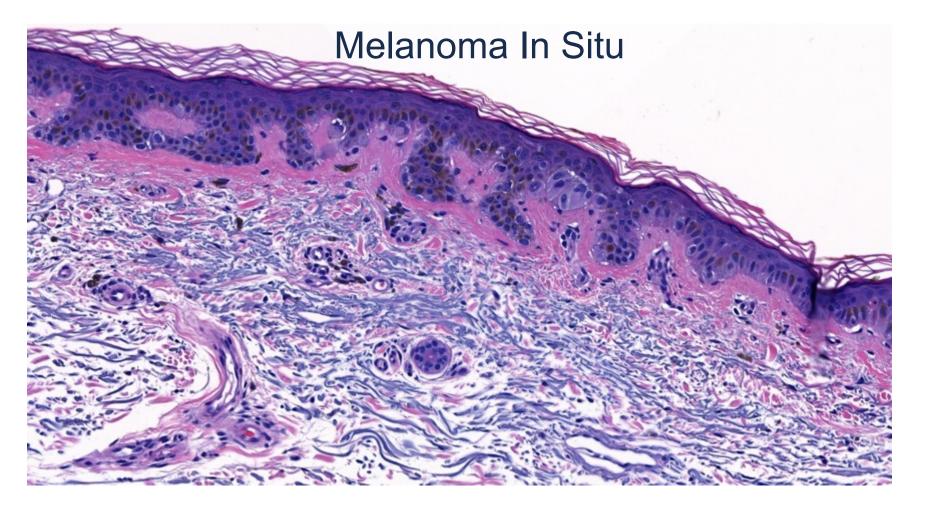


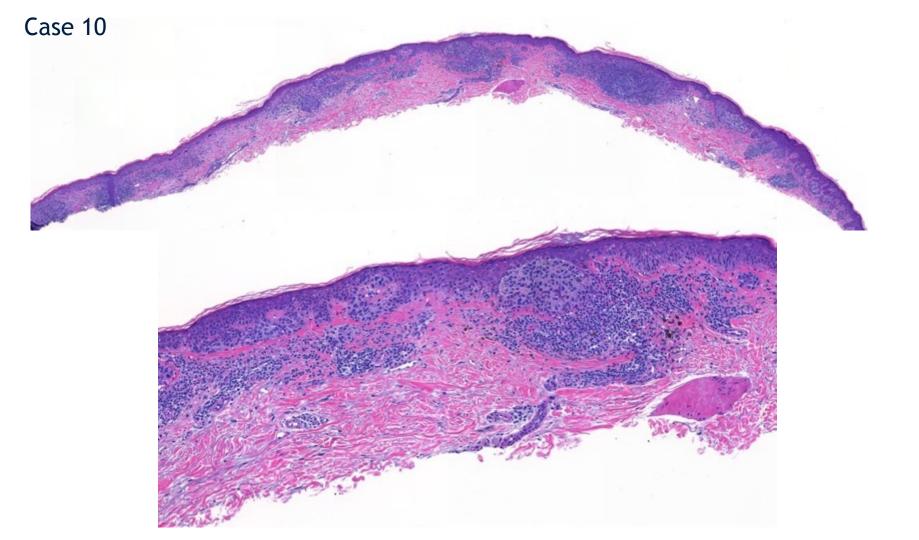

- BRAF negative
- PRAME negative
- Ki67 low mitotic index

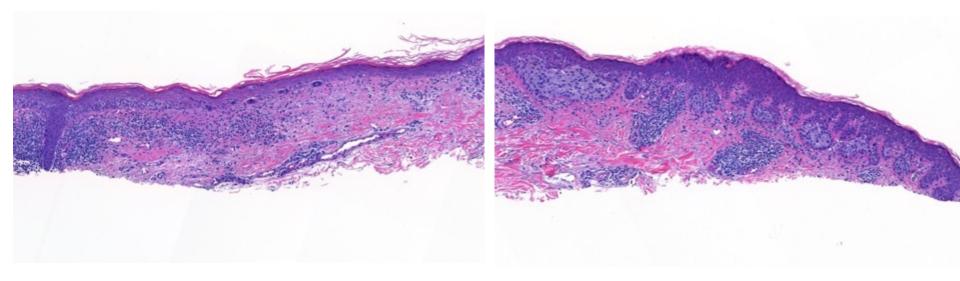
Case 2

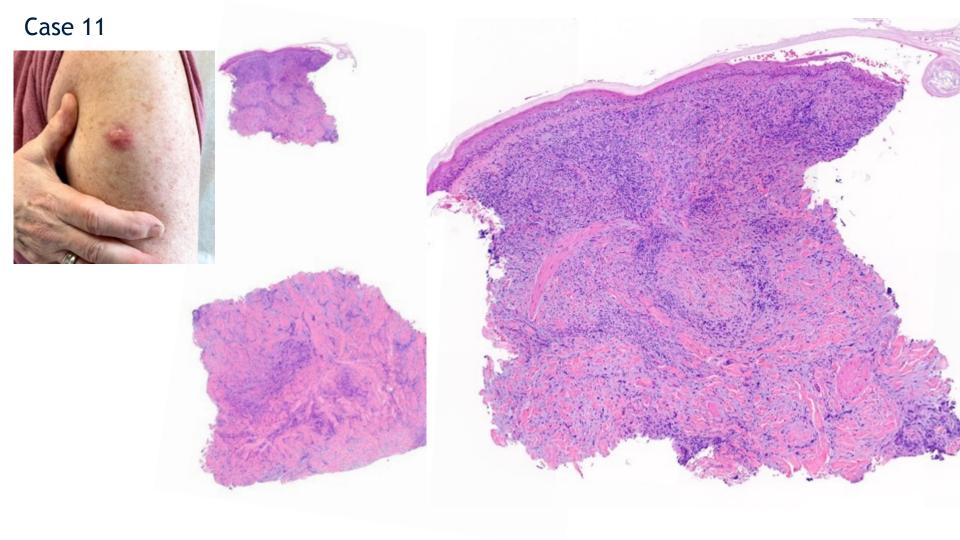


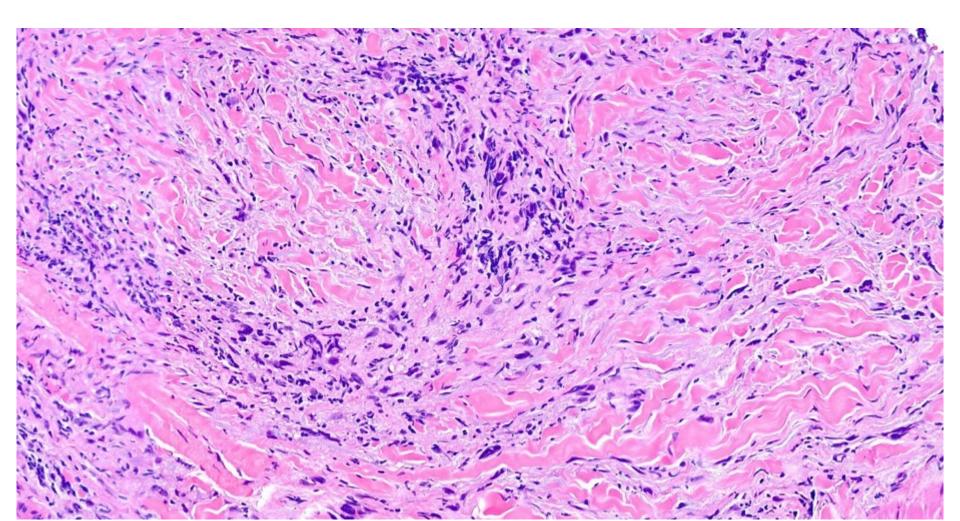


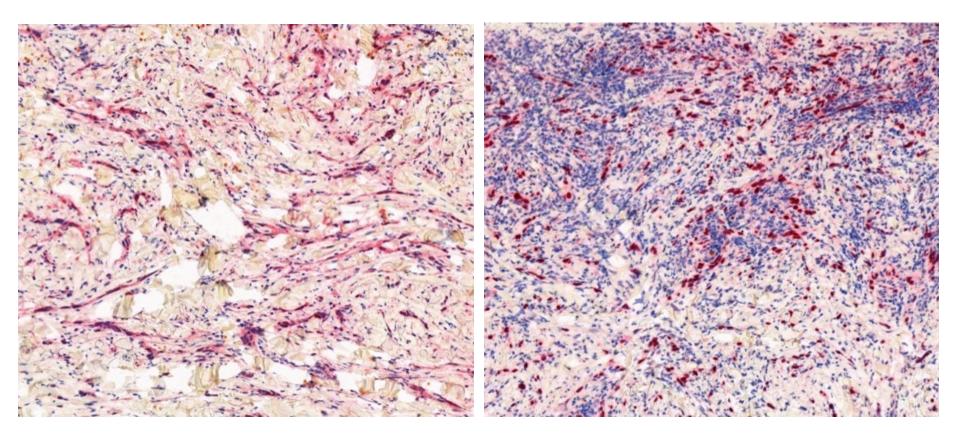


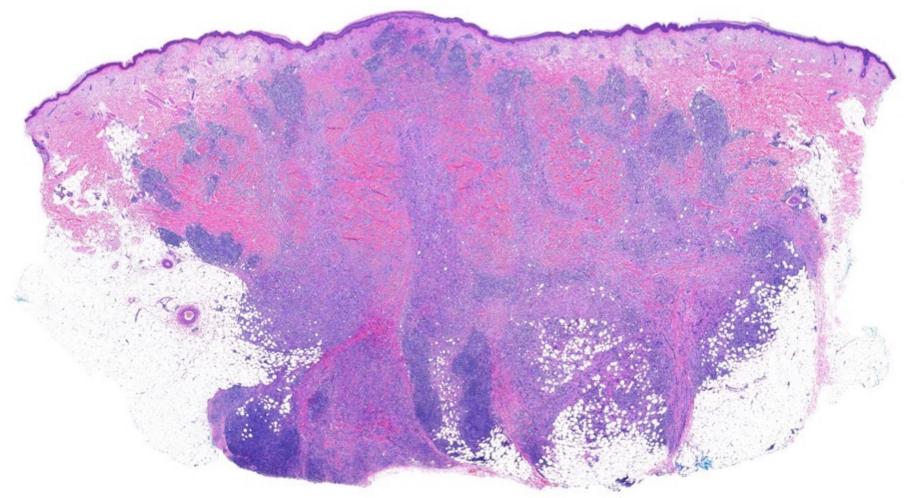

Solar Lentigo


Solar Lentigo with Melanocytic Hyperplasia

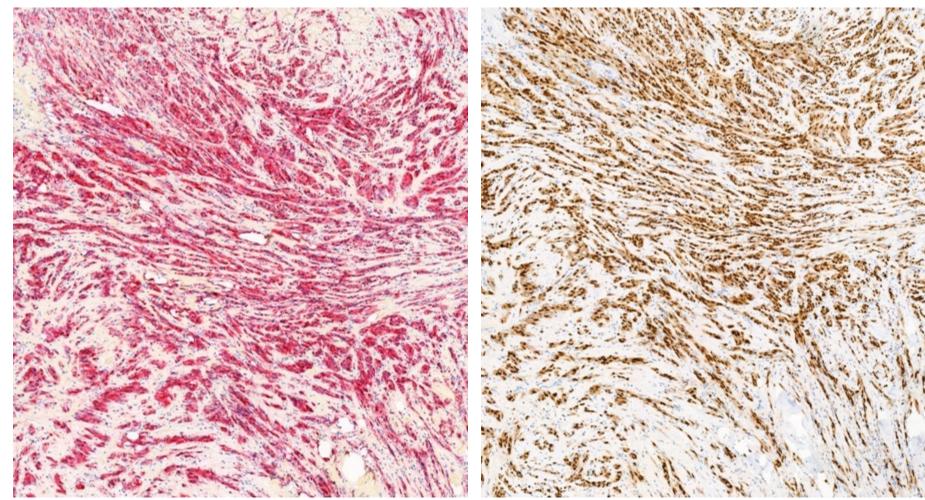





Melanoma



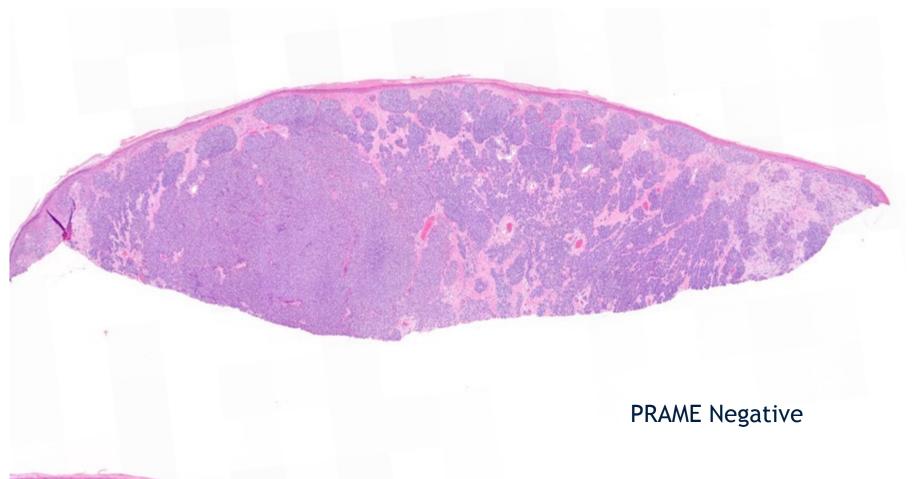
S100



Desmoplastic Melanoma

DP22-09976 S100

DP22-09976 SOX10



Desmoplastic Melanoma

- Spindle cell melanoma with fibrosis
- Pure vs Mixed
- Neurotropism
- Lymphoid aggregates
- 25% to 50% Melanoma in situ
- S100+, SOX10+, Variable Melan A

Case 12

Nodular Melanoma

Conclusive Remarks

- Melanocytic lesions comprise a significant workload of a dermatopathologist
- Epidemiologic evidence suggest substantial overdiagnosis of melanoma in-situ and thin melanomas
- Familiarity with the histopathologic spectrum of benign melanocytic lesions is required to minimize overdiagnosis
- Dysplastic nevus no longer has a precursor status, but continues to be biopsied at a high rate
- Emerging molecular diagnostic tools need further validation

The End

Jason.lee@jefferson.edu